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Abstract
The problem of persistent currents in loops interrupted by Josephson junctions
is considered. We prove that persistent currents are related to local minimizers
of the Ginzburg Landau energy functional. Although the order parameter is
discontinuous at the junction, we show that the local minimizers are related to
the homotopy types of the domain. Therefore, persistent currents will occur in
any multiply connected domain if the junction strength is weak enough.

PACS numbers: 74.81.Fa, 74.20.De

1. Introduction and formulation

The phenomenon of persistent currents is one of the most striking aspects of superconductivity.
It is often used, together with zero electrical resistivity and the expulsion of magnetic fields
(Meissner effect), to demonstrate the exceptional nature of superconductivity. Persistent
currents are currents that flow without any external driving force in multiply connected
superconducting samples such as rings or solid tori. These currents persist without appreciable
dissipation for extremely long periods of time. They were discovered by K Onnes immediately
after he observed the phase transition into the superconducting state. The relation of persistent
currents to magnetic flux quantization was established in a classical experiment by Deaver
and Fairbanks [2]. Since there is no driving force, persistent currents are associated with
metastable states.

Inspired by the Deaver–Fairbanks experiment, Goldman et al [3] studied metastable
currents in superconducting rings interrupted by a thin normal layer (Josephson junction).
Since the phase change across the junction can be large, and since it is the circulation of the
phase gradient in the loop that is related to the magnetic flux, it is not clear if the persistent
current effect will also occur in the interrupted junction (for technical reasons Goldman et al
used a ring with two junctions, but this does not alter the general picture). Later, we shall
argue from a more mathematical point of view why the existence of metastable currents in
rings with junctions is not obvious at all.
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The connection between persistent currents and flux quantization hints that the
mathematical structure behind this effect is related to the homotopy characteristics of the
domain. In the absence of a driving force the global minimizer of the free energy is of
course the constant state, where no current flows. Therefore, persistent currents must be local
minimizers. We use the Ginzburg Landau (GL) model for the energy:

G(u,A) =
∫

�

(
|(i∇ − A)u|2 +

κ2

2
(|u|2 − 1)2

)
dx +

∫
Rn

|∇ × A|2 dx. (1)

Here u is the complex-valued order parameter, A is the magnetic vector potential, κ is the GL
parameter and � is the domain occupied by the superconducting sample. The derivation of the
nondimensional model (1) can be found in numerous texts such as [1, 7], etc. The functional G
is to be minimized in an appropriate function space that will be defined below. The difficulty is
that the functions in the relevant space are not necessarily smooth. Since homotopy is defined
for continuous functions, there is a conflict between the physical intuition (local minimizers
should exist, and they are associated with homotopy types) and the mathematical setup of the
optimization problem. This conflict was resolved in [6] where the authors used a result of
White [8] that enables us to endow even certain nonsmooth functions with the homotopy type.
Therefore, the case of persistent currents in ‘clean’ rings is now understood.

The goal of the current paper is to derive a similar theory also for the case of persistent
currents in rings with junctions. We must first decide on a model for the junctions. Recall that
the key idea behind the Josephson effect is that the current flowing through the junction is a
periodic function of the phase jump across it. The standard approximation is

J ∝ sin[φ], (2)

where J is the supercurrent, φ is the phase of the complex-valued u and [·] denotes a jump of
a quantity across the junction. In order to work effectively with the Josephson condition, we
include it in the GL energy function. A useful way to do it is to model the junction by a weak
link. There are a number of ways of doing that. One is to assume that there is a constriction,
namely, the thickness of the ring (or torus) becomes very small right at (and near) the junction.
Another way is to assume that the sample is ‘dirty’ near the junction, i.e. the coherence length
is very small there. Mathematically, the two models are similar. The problem of a GL model
with a weak link was studied rigorously in [5]. It was shown there that under certain canonical
scaling, the energy of the ring (torus) plus junction becomes

GJ (u,A) =
∫

�̃

(
|(i∇ − A)u|2 +

κ2

2
(|u|2 − 1)2

)
dx +

∫
Rn

|∇ × A|2 dx + b

∫
�

[u]2. (3)

Here we denote the domain minus the junction by �̃, and the junction surface is denoted by
�. See figure 1. The parameter b is the inverse of the junction strength; thus a large b models
a weak link. The functional GJ is minimized in a function space defined over �̃, i.e. the
functions need not be continuous across the junction �.

Our problem, therefore, is to show that the energy GJ has local minimizers that can be
classified by their homotopy type. The difficulty is now more severe than that in the first (clean
ring) model (1). In the clean model, we must work in function spaces that include nonsmooth
functions. However, we can expect the minimizer to be at least continuous (since stationary
functions of functionals like (1) are typically smooth). On the other hand, even in the most
optimistic scenario, the local minimizers of (3) are surely going to have discontinuity at the
junction �. Nevertheless, we shall show that for sufficiently large b, i.e. for sufficiently weak
junctions, there do exist local minimizers that are classified by their homotopy type.

In the following section, we shall present an explicit calculation in a simple one-
dimensional model. The main result of this paper will be stated and proved in section 3.
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Figure 1. A sketch of the ring geometry with the junction �.

This result will be discussed and extended in several ways in section 4. We point out that the
functionals G and GJ above and the functionals eb, Eb,E∞ and Gb

J below are all invariant
under certain gauge transformations. Therefore, the solutions derived here are unique only up
to such a transformation.

2. A one-dimensional toy problem

The purpose of this section is to present a very simple one-dimensional example of a solution
that exhibits persistent (metastable) currents. The computations will be explicit; in fact the
example is not new, and the essential details were already clear to Goldman et al [3] and later
to Ouboter [4]. Nevertheless, we choose to start with this simple toy problem since it reveals
very clearly the nature of the solution and the connection with the homotopy type. This will
enhance the understanding of the following section.

Consider a loop of length 2π , parameterized by its arclength s. Since there is no applied
magnetic field, we select a gauge where A = 0. Also, for the sake of simplicity we assume
that the order parameter u(s) takes values in the unit circle S1, i.e. u : S1 → S1. The junction
is located at s = 0, and u can have a jump discontinuity there. The cost function eb is defined
by

eb(u) =
∫ 2π

0
|u′|2 ds + b([u])2. (4)

As usual we use [·] to denote the jump of a quantity across the junction at s = 0, b is a
positive parameter and u′ = du/ds. We shall show through an explicit construction that for
every integer m there exists a number bm, such that there exists exactly one stable nontrivial
minimizer un for all integers n, 0 < n � m.

Since u takes values in S1, it can be expressed as u(s) = exp(iφ(s)). The functional eb

is invariant under the transformation u → u exp(iα) for any constant α. It is convenient to
fix the phase φ at the origin, say by φ(0) = 0. Inserting the polar representation of u into
equation (4) gives

Fb(φ) =
∫ 2π

0
(φ′)2 ds + b(2 − 2 cos(φ(2π))). (5)

The Euler Lagrange equation of Fb is simply φ′′ = 0, implying that the current J ≡ φ′(s)
is constant in the loop. Equating the first variation of Fb to zero also provides a jump condition
across the junction at s = 0:

φ′(2π) = φ′(0) = J = b sin(φ(2π)). (6)

Integrating the equation φ′ = J along the loop gives φ(2π) = 2πJ . Inserting this result into
equation (6), we obtain

J = b sin(2πJ). (7)
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The optimization problem was thus reduced to the algebraic problem (7). Each solution
of this equation is associated with a critical point of the functional Fb. Before considering
the solutions, we derive a criterion for their stability, that is, a criterion for a solution to be a
minimizer. For this purpose, we compute the second variation of Fb:

δ2Fb(φ, β) =
∫ 2π

0
(β ′)2 ds + b cos(φ(2π))β2. (8)

Therefore a solution φ is a minimizer when cos(φ(2π)) > 0, while the solution is not a
minimizer if cos(φ(2π)) < 0.

We are now in a position to examine the set of minimizers. It is clear from trigonometric
considerations that in each period of the sine function there are at most two solutions to
equation (7): the first of them is stable and the second is unstable. The number of such
solutions is an increasing function of b.

3. Homotopy classification of metastable currents

We shall now show that the simple situation explained in the previous section can be generalized
to arbitrary geometries in R2 and R3 with a nontrivial homotopy structure. Our results are based
on [6] where the idea of classification of minimizers by the homotopy type was introduced.
Therefore, to simplify the presentation, we shall analyse in some detail a special case of a
more general problem, and highlight the new features of the problem under consideration here.
Later, we shall comment on a number of extensions of the special case.

Let � be a domain in Rn, n = 2 or n = 3, that is topologically equivalent to the solid torus.
Let � be an (n − 1)-dimensional surface that cuts the torus so that the domain �̃ = �\� is
simply connected. We assume that both � and � are smooth. We further define the following
functional:

Eb(u) =
∫

�̃

(|∇u|2 + b(|u|2 − 1)2) dx + b

∫
�

[u]2 dx. (9)

Here, as elsewhere in this paper, [·] denotes the jump of the relevant quantity across the
interface �.

The expected jump of u across the junction � requires a careful definition of the relevant
function spaces. We use H 1(�̃) to denote the Sobolev space of complex-valued functions in
L2(�̃) whose (weak) derivatives are also in L2(�̃). Similarly, we define the space H 1(�).
Obviously, if v ∈ H 1(�) then also v ∈ H 1(�̃) but not necessarily the other way round. It
is also useful to consider the spacial spaces of functions taking values in S1. We denote
them by H 1(�̃, S1) and H 1(�, S1) depending on the domain of definition. We naturally seek
minimizers of Eb in the space H 1(�̃). The global minimizer is the constant function (of
amplitude 1). However, we shall show that when b is large enough there exist also nontrivial
local minimizers.

Since we are interested in the case of large b, it is useful to introduce an additional
functional that is expected to capture the behaviour in the limit b → ∞:

E∞(u) =
∫

�

|∇u|2 dx. (10)

The problem of finding local minimizers for E∞ in the function space H 1(�, S1) was
considered in [6]. In particular, it was shown there that for each integer m there exists a
local minimizer um of E∞ in this space which is of the homotopy type m. The proof relies
on the partition of H 1(�, S1) into homotopy types (the integers in the current case) and a
deep result of White [8], who showed how to define a homotopy type even for nonsmooth
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functions in H 1(�, S1). Furthermore, the local minimizers um are isolated (up to the usual
multiplication by exp(iα) for a fixed α). Note that the functions um are in the space H 1(�, S1),
i.e. they do not have a jump discontinuity across �.

Our main result is the following theorem that uses the local minimizers um to establish
the existence of local minimizers ũb

m for Eb.

Theorem 1. For each integer m there exists a number bm, such that for all b > bm the
functional Eb possesses a local minimizer ub

m. Moreover, the sequence ub
m converges strongly

in H 1(�̃) to um.

Proof. For each function in H 1(�, S1) of a given homotopy type m, there exists a ball of
radius γm such that all the functions in H 1(�, S1) within that ball are of the homotopy type
m. Consider the problem of minimizing Eb among all functions u in H 1(�̃) satisfying

‖u − um‖H 1(�̃) � γm. (11)

Since the set is closed, a minimizer exists, and we denote it by ub
m. The following inequalities

obviously hold:

Eb
(
ub

m

)
� Eb(um) = E∞(um). (12)

It remains to show that ub
m is actually inside the ball defined by (11), and therefore it is a

local minimizer in the metric of H 1(�̃). Fixing m, the sequence
{
ub

m

}
is, thanks to inequality

(12), uniformly bounded in H 1(�̃). Therefore it weakly converges there to a limit ũm (of
course, there could be more than one weakly convergent subsequence, but this technicality
can be handled as in [6]). Moreover, a lower semi-continuity argument implies that the chain
(12) can be extended into

Ẽ∞(ũm) � Eb
(
ub

m

)
� Eb(um) = E∞(um), (13)

where Ẽ∞(u) = ∫
�̃

|∇u|2 dx. Our next step is to show that ũm is actually in the space
H 1(�, S1), and then Ẽ∞(ũm) = E∞(ũm). Note first that the inequality∥∥ub

m

∥∥
H 1(�̃)

� Cm (14)

implies
∫
�̃

(∣∣ub
m

∣∣2 − 1
)2

dx � Cm/b. Therefore,
∣∣ub

m

∣∣ converges a.e. to 1, and thus ũm ∈
H 1(�̃, S1). To show that we can remove the tilde from over �, we multiply ∇ub

m by a smooth
test function w and integrate over �̃. An integration by parts gives∫

�̃

ub
m∇w dx = −

∫
�̃

∇ub
mw dx +

∫
�

w
[
ub

m

]
ν dx, (15)

where ν is normal to the interface �. The estimate (12) implies that
∫
�

w
[
ub

m

]
dx → 0 as

b → ∞. Also, the weak convergence of ub
m to ũm enables us to pass to the limit in (15). We

thus obtain ∫
�̃

∇ũmw dx = −
∫

�̃

ũm∇w dx = −
∫

�

ũm∇w dx. (16)

Therefore the weak derivative of ũm is in L2(�), which implies that indeed ũm ∈ H 1(�, S1).
The chain of inequalities in (13) now implies that

E∞(ũm) � E∞(um), (17)

where both functions ũm and um are in the space H 1(�, S1). According to White’s theory
[8] the homotopy type is preserved through weak convergence, and thus ũm is of m homotopy
type. Therefore, the inequality (17) must be an equality. Hence ũm = um (up to the usual
irrelevant constant phase shift). This forces equalities everywhere in (13). Therefore the
L2(�̃) norm of ub

m converges to the L2(�̃) norm of ũm, and thus the sequence ub
m converges

strongly to um which completes the proof of the theorem. �
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4. Related results and summary

Theorem 1 was formulated in a somewhat restricted way. In fact, similar results hold for a
number of generalizations as follows.

• The parameter b appears in front of both the term
∫
�̃
(|u2|−1)2 dx and the term

∫
�

[u]2 dx.
It is easy to see that we could have used two different large parameters and pass to the
limit with a double-indexed sequence.

• The Ginzburg Landau model of superconductivity for a superconducting sample with a
toroidal shape that is interrupted by a weak link was introduced in section 1. Consider
the following special case of it:

Gb
J (u,A) =

∫
�̃

((|∇ − iA)u|2 + b(|u|2 − 1)2) dx + b

∫
�

[u]2 dx +
∫

Rn

|∇ × A|2 dx. (18)

We seek minimizers (u,A) of Gb
J in the space H 1(�̃) × H 1

div, where H 1
div is the Sobolev

space of a divergence-free vector field that is obtained from the closure of the space of C∞
0

vector fields under the norm
∫
Rn |∇v|2 dx. By exactly the same method of the previous

section, we can show that for each integer m and for b sufficiently large there exists a
local minimizer

(
ub

m,Am

)
of Fb, such that ub

m is close (in the H 1 sense) to a function in
H 1(�, S1) which is of the m homotopy type. The supercurrents associated with these
metastable solutions are persistent currents.

To summarize, we established that the persistent currents in rings interrupted by Josephson
junctions are related to the homotopy types in the ring. This gives the mathematical foundation
for the experimental observation of Goldman et al [3].
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